Ratio

Proportions

Many trades, including automotive technology use ratios and proportions to help solve technical problems.

Vocabulary:
Ratio: Is a comparison, using division, of two quantities of the same kind, both expressed in the units. Proportions: An equation stating that 2 ratios are equal.

The ratio of two gears, one a 64 tooth driving gear, the other a driven gear with 16 teeth can be written as a ration using:

$$
\text { Gear ratio }=\frac{\text { number of teeth on the driving gear }}{\text { number of teeth on the driven gear }}
$$

This example would be written as: \quad Gear ratio $=\frac{64}{16}=\frac{4}{1}$ or $4: 1$
Another way to show ration is through "rate of change or slope." For example, the steepness of a hill can be written as a ratio of the height (rise) to its horizontal extent (run).

$$
\text { Steepness (slope) }=\frac{10}{80}=\frac{1}{8} \text { or } 1: 8
$$

Remember:

Pretty Please My Dear Aunt Sally
(From left to right; Parentheses; Power; Multiply; Divide; Add, Subtract)

Pulleys are used to transfer power from one system to another (example: crankshaft to alternator). The ratio of the pulley diameter will determine relative pulley speed. Using the formula:

Ratio $=\frac{\text { Diameter of Pulley A }}{\text { Diameter of Pulley B }} \longleftarrow$ Same Units

$$
\text { Ratio }=\frac{21}{9}=\frac{7}{3}=7: 3
$$

Engine Compression Ratio (CR) is the difference when a cylinder (piston) is at the bottom of its stroke (Bottom Dead Center) and the air/fuel mixture is at its maximum expanded volume or at the top of its stroke (Top Dead Center) and the air/fuel mixture is at its maximum compressed volume.

$$
\mathrm{CR}=\frac{\text { Expanded Volume }}{\text { Compressed Volume }}
$$

$$
\mathrm{CR}=\frac{40}{5}=\frac{8}{1}=8: 1
$$

Compressed Volume
TDC

Expanded Volume
BTC

Example 1: Determine the ratio of this pulley set.

Example 2: Determine the ratio of this gear set. Gear ratio $=\frac{\text { number of teeth on the driving gear }}{\text { number of teeth on the driven gear }}$
(b)

b = Driving gear (60 teeth)

Example 3: Determine the CR of a gasoline engine that has an expanded cylinder volume of $47 \mathrm{in}^{3}$ and a compressed cylinder volume of $5.00 \mathrm{in}^{3}$.

Proportions, Example 4:

$$
\frac{1}{3}=\frac{4}{12} \text { say as: one is to three as four is to } 12
$$

Let's look at the math...cross multiply (cross-products) $1 \times 12=12$ and $3 \times 4=12$ to determine if this is a true proportion. If the proportion is true statement

$5 \times 16=80 \& 8 \times 10=80$
This is a true proportion!

Example 5:

$$
\begin{aligned}
& \frac{x}{4}=\frac{12}{16} \text { solve for } x \\
& x \times 16=4 \times 12 \text { or } 16 x=48 \\
& x=\frac{48}{16} \\
& x=3
\end{aligned}
$$

Example 6:

$$
\begin{aligned}
& \frac{6}{x}=\frac{15}{10} \text { solve for } x \\
& x \times 15=6 \times 10 \text { or } 15 x=60 \\
& x=\frac{60}{15} \\
& x=4
\end{aligned}
$$

Example 7: The CR of a classic Datsun (Nissan) $280 Z$ is 8.3:1. If the compressed volume of the cylinder is $36 \mathrm{~cm}^{3}$, what is the expanded volume of the cylinder?

Example 8: A 10 ft bar of I-beam weights 208 lb . What is the weight of a 6 ft length?

Example 9: The headlights on a car are set so the light beam drops 2 in . for each 25 ft measured horizontally. If the headlights are mounted 30 in . above the ground, how far ahead of the car will they hit the ground?

North Montco Technical Career Center Math-In-CTE

Worksheet - Ratio/Proportions

Name: \qquad AM-1: \qquad PM \qquad Date: \qquad
Please show all your work!
1.

	Teeth on Driving Gear A	Teeth on Driven Gear B	Gear Ration, \bar{A}
A	35	5	
B	12	7	$2: 1$
C		3	$3.5: 1$
D	21		

2.

	Diameter of Pulley A	Diameter of Pulley B	Pulley Ration, \bar{A}
A	$16^{\prime \prime}$	$6 "$	
B	$15^{\prime \prime}$	$12^{\prime \prime}$	
C	27 mm		$4.5: 1$
D		10 cm	$4: 1$

3.

	Rise	Run	Rate of Change (Pitch)
A	8 ft	6 ft	
B		24 ft	$4: 12$
C	7 ft		$3: 12$

4. $\frac{3}{2}=\frac{x}{8}$ solve for x
5. $\frac{y}{60}=\frac{5}{3}$ solve for y
6. The CR in a certain engine is $9.6: 1$. If the expanded volume of a cylinder is $48 \mathrm{in}^{3}$, what is the compressed volume?

North Montco Technical Career Center
 Math-In-CTE

Homework - Ratios/Proportions

Name: \qquad AM-1: \qquad PM \qquad Date: \qquad
Please show all your work!
1.

| | Teeth on Driving
 Gear A | Teeth on Driven
 Gear B | Gear Ration, $\frac{A}{B}$ |
| :---: | :---: | :---: | :---: |$|$| $1: 3$ |
| :---: |
| A |
| B |

2.

	Diameter of Pulley A	Diameter of Pulley B	Pulley Ration, \bar{A}
A	8.46 cm	11.28 cm	
B	20.14 cm		$3.14: 1$
C		12.15 cm	$1: 2.25$
D	4.45 cm		$0.25: 1$

3.

	Rise	Run	Rate of Change (Pitch)
A	9 ft	15 ft	
B		20 ft	$2.4: 12$
C	3 ft		$1.8: 12$

4. $\frac{138}{23}=\frac{18}{x}$ solve for x
5. $\frac{x}{34.86}=\frac{1.2}{8.3}$ solve for x
6. In winter weather, fuel-line antifreeze must be added at a rate of one car per 8 gallons of fuel. How many cans must be added for an 18 gallon fuel tank?
7. The ideal air fuel ratio is 14.7:1 (14.7 parts air to I part air). If a certain vehicle 9 lb of fuel, how many lbs of air should it draw to achieve the ideal ratio? Round to the nearest pound.
